The Democratization of Data Science

Jonathan Cornelissen:

Relegating all data knowledge to a handful of people within a company is problematic on many levels. Data scientists find it frustrating because it’s hard for them to communicate their findings to colleagues who lack basic data literacy. Business stakeholders are unhappy because data requests take too long to fulfill and often fail to answer the original questions. In some cases, that’s because the questioner failed to explain the question properly to the data scientist.

​…

A data-literate team makes better requests. Even a basic understanding of tools and resources greatly improves the quality of interaction among colleagues. When the “effort level” — the amount of back-and-forth needed to clarify what is wanted — of each request goes down, speed and quality go up.

​…

Shared skills improve workplace culture and results in another way, too: They improve mutual understanding. If you know how hard it will be to get a particular data output, you’ll adjust the way you interact with the people in charge of giving you that output. Such adjustments improve the workplace for everyone.